Optimal Centroid Estimation Scheme for Multi Dimensional Clustering
نویسنده
چکیده
High dimensional data values are processed and optimized with feature selection process. A feature selection algorithm is constructed with the consideration of efficiency and effectiveness factors. The efficiency concerns the time required to find a subset of features. The effectiveness is related to the quality of the subset of features. 3 dimensional data models are constructed with object, attribute and context information. Cluster quality is decided with domain knowledge and parameter setting requirements. CAT Seeker is a centroid-based actionable 3D subspace clustering framework. CAT Seeker framework is used to find profitable actions. Singular value decomposition, numerical optimization and 3D frequent itemset mining methods are integrated in CAT Seeker model. Singular value decomposition (SVD) is used to calculating and pruning the homogeneous tensor. Augmented Lagrangian Multiplier Method is used to calculating the probabilities of the values. 3D closed pattern mining is used to fetch Centroid-Based Actionable 3D Subspaces (CATS). Optimal centroid estimation scheme is used to improve the financial data analysis process.. Intra cluster accuracy factor is used to fetch centroid values. Inter cluster distance is also considered in centroid estimation process. Dimensionality analysis is applied to improve the subspace selection process.
منابع مشابه
روش جدید تقطیع تصویر بر مبنای خوشهبندی فازی مبتنی بر تکامل تفاضلی چندهدفه
Image segmentation is one of the most important and difficult steps in machine vision problems and achieving the desired results often requires satisfaction of different objectives. One approach to face this situation uses multi-objective fuzzy clustering of pixels in the feature space. This paper proposes a new strategy for search within the family of multi-objective differential evolution alg...
متن کاملIntegration of Subspace Clustering and Action Detection on Financial Data
Object, attribute and context information are linked in the dimensional data models. Cluster quality is decided with domain knowledge and parameter setting requirements. CAT Seeker is a centroidbased actionable D subspace clustering framework. CAT Seeker framework is used to find profitable actions. Singular value decomposition, numerical optimization and D frequent itemset mining methods are i...
متن کاملInter Cluster Distance Management Model with Optimal Centroid Estimation for K-Means Clustering Algorithm
Clustering techniques are used to group up the transactions based on the relevancy. Cluster analysis is one of the primary data analysis method. The clustering process can be done in two ways such that Hierarchical clusters and partition clustering. Hierarchical clustering technique uses the structure and data values. The partition clustering technique uses the data similarity factors. Transact...
متن کاملEfficient Selectivity Estimation by Histogram Construction Based on Subspace Clustering
Modern databases have to cope with multi-dimensional queries. For efficient processing of these queries, query optimization relies on multi-dimensional selectivity estimation techniques. These techniques in turn typically rely on histograms. A core challenge of histogram construction is the detection of regions with a density higher than the ones of their surroundings. In this paper, we show th...
متن کاملAn Incremental Multi-Centroid, Multi-Run Sampling Scheme for k-medoids-based algorithms
Data clustering has become an important task for discovering significant patterns and characteristics in large spatial databases. The MuftiCentroid, Multi-Run Sampling Scheme (MCMRS) has been shown to be effective in improving the k-medoids-based clustering algorit hms in our previous work. In this paper, a more advanced sampling scheme termed Incremental MultiCentrozd, Multi-Run Sampling Schem...
متن کامل